Metalorganic diazoalkanes

XX *. Crystal structure of trimethyltin diazoacetic ester, $\mathrm{Me}_{3} \mathrm{SnC}\left(\mathrm{N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}$

Jörg Lorberth *, Sung-Hee Shin, Harald Donath, Sigrid Wocadlo and Werner Massa
Fachbereich Chemie, Hans-Meerwein-Strasse, Philipps University, W-3550 Marburg/Lahn (Germany)
(Received September 26th, 1990)

Abstract

$\mathrm{Me}_{3} \mathrm{SnC}\left(\mathrm{N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}$ was obtained as a yellow, crystalline compound, m.p. $30^{\circ} \mathrm{C}$ from the reaction of $\mathrm{Me}_{3} \mathrm{SnNEt}_{2}$ with $\mathrm{HC}\left(\mathrm{N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}$, and its structure determined by X -ray diffractometry. The $\mathrm{Me}_{3} \mathrm{SnC}\left(\mathrm{N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}$ molecules have a plane of symmetry, the diazoacetic ester group being fixed in the Z-(1)-conformation. The CNN group is almost linear (177.5(7) ${ }^{\circ}$) and has bond lengths ($\mathrm{C}-\mathrm{N} 131.7(8)$ and $\mathrm{N}-\mathrm{N}$ 111.9(9) pm) comparable with those in other metalorganic diazoalkanes. As in $\mathrm{Me}_{3} \mathrm{PbC}\left(\mathrm{N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}$, the oxygen atom of the carbonyl group is weakly coordinated to the tin atom of a neighbouring molecule: $\mathrm{Sn}-\mathrm{O} 312.5(5) \mathrm{pm}, \mathrm{C}-\mathrm{O}-\mathrm{Sn} 180.0^{\circ}$.

Introduction

There have been only a few reports of X-ray structural studies on metal derivatives of diazoalkanes. We present below the results of the first such study of a tin diazoalkane.

Results and discussion

The diazoalkanes $\mathrm{Me}_{3} \mathrm{MC}\left(\mathrm{N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}$ with $\mathrm{M}=\mathrm{Sn}$ [1] or Pb [2] are easily obtained by the amine elimination procedure:

$$
\begin{aligned}
& \mathrm{Me}_{3} \mathrm{MNR}^{1} \mathrm{R}^{2}+\mathrm{HC}\left(\mathrm{~N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et} \rightarrow \mathrm{Me}_{3} \mathrm{MC}\left(\mathrm{~N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}+\mathrm{HNR}^{1} \mathbf{R}^{2} \\
& \left(\mathrm{M}=\mathrm{Sn} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{Me}, \mathrm{Et} ; \mathrm{M}=\mathrm{Pb} ; \mathrm{R}^{1}=\mathrm{R}^{2}=\mathrm{SiMe}_{3}\right)
\end{aligned}
$$

[^0]

Fig. 1. Schakal drawing [14] of a molecule $\mathrm{Me}_{3} \mathrm{SnC}\left(\mathrm{N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}$ in the crystal.

On the basis of spectroscopic data mainly those for IR/RE, NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{15} \mathrm{~N}\right.$, ${ }^{119} \mathrm{Sn}$) and ${ }^{119} \mathrm{Sn}$-Mössbauer spectra [2], we concluded that in solid $\mathrm{Me}_{3} \mathrm{Sn}$ $\mathrm{C}\left(\mathrm{N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}$ the molecules have a trigonal bipyramidal configuration at tin with carbonyl oxygen atoms interlinking neighbouring molecules in the crystal, as found previously for, e.g., solid $\mathrm{Me}_{3} \mathrm{PbC}\left(\mathrm{N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}$ [2]. Diazoacetic ester in the liquid phase from $-50^{\circ} \mathrm{C}$ to $+20^{\circ} \mathrm{C}$ is present as 2 conformational isomers, $Z-(1)$ and E-(1), with an estimated activation barrier for interconversion of only $36-48 \mathrm{~kJ} / \mathrm{mol}$ (calculated value: $56 \mathrm{~kJ} / \mathrm{mol}$), a value significantly lower [3] than that for diazo ketones, for which values of $60-72 \mathrm{~kJ} / \mathrm{mol}$ have been reported [4].

An X-ray crystal structure determination on $\mathrm{Me}_{3} \mathrm{SnC}\left(\mathrm{N}_{2}\right) \mathrm{CO}_{2}$ Et revealed (Fig. 1) that all the atoms except the methyl group at $\mathrm{C}(6)$ and two H -atoms at $\mathrm{C}(5)$ lie in the mirror plane of the space group $P 2_{1} / \mathrm{m}$. As in the other metalorganic di-

Table 1
Molecular parameters (bond lengths [pm], bond angles [${ }^{\circ}$]) obtained from X-ray data for metalorganic diazoalkanes and the parent $\mathrm{CH}_{2} \mathrm{~N}_{2}$ (gas phase)

Compound	M-C	C-N	$\mathrm{N}-\mathrm{N}$	$\begin{aligned} & \mathrm{M}-\mathrm{C}-\mathrm{N} \\ & {[\mathrm{H}-\mathrm{C}-\mathrm{N}]} \end{aligned}$	$\mathrm{C}-\mathrm{N}-\mathrm{N}$	Lit.
$\mathrm{CH}_{2} \mathrm{~N}_{2}$		132	112	[116.5]	180.0	[6]
$\mathrm{Ph}_{3} \mathrm{Si}(\mathrm{Ph}) \mathrm{CN}_{2}$	188.2(1)	128.0(1)	113.0(1)	115.3(1)	178.1(1)	[7]
$\mathrm{Ph}_{3} \mathrm{Ge}(\mathrm{Ph}) \mathrm{CN}_{2}$	isostructural to Si					
$\mathrm{Hg}\left[\mathrm{CN}_{2} \mathrm{CO}_{2} \mathrm{R}\right]_{2}$	213(3)	125(4)	115(5)	118(1)	178(5)	[8]
($\mathrm{R}=\mathrm{t}-\mathrm{C}_{4} \mathrm{H}_{9}$)						
$\mathrm{Hg}\left[\mathrm{CN}_{2} \mathrm{CO}_{2} \mathrm{Et}\right]_{2}$	201(1)	131(2)	108(2)	124(1)	175(2)	[9]
$\mathrm{Me}_{3} \mathrm{PbCN}_{2} \mathrm{CO}_{2} \mathrm{Et}$	227.0	133.0	117.0	116.3(1)	174.3(3)	[2]
$\mathrm{Me}_{3} \mathrm{SnCN}_{2} \mathrm{CO}_{2} \mathrm{Et}$	$214.2(6)$	131.7(8)	111.9(9)	118.2(4)	$177.5(7)$	this work
$\left[\mathrm{Ph}_{3} \mathrm{P}_{2} \mathrm{Pd}(\mathrm{Cl})\left[\mathrm{CN}_{2} \mathrm{CO}_{2} \mathrm{Et}\right]\right.$	201.5(1)	$127.5(1)$	116.0(1)	121.7(8)	177.2(1)	[10]
$\left[\mathrm{Bu}_{3} \mathrm{P}_{2} \mathrm{Pd}\left[\mathrm{CN}_{2} \mathrm{CO}_{2} \mathrm{Et}\right]_{2}\right.$	207.8(6)	127.9(8)	$113.001)$	119.5(5)	176.3(8)	[10]
$\mathrm{RhICH}_{3}\left(\mathrm{PMe}_{3}\right)_{3}\left[\mathrm{CN}_{2} \mathrm{SiMe}_{3}\right]$	210(2)	130(3)	109(3)	119(2)	175(2)	[11]

Fig. 2. Stereo view of two unit cells showing the chains formed by weak $\mathrm{Sn} \cdots \mathrm{O}$ contacts.

Table 2
Crystal data and details of crystallographic study

Crystal data
Formula, M_{r}
Absorption $\mu\left[\mathrm{cm}^{-1}\right]$
Space group
Lattice constants [pm]

Temperature [K]
Density $\left[\mathrm{g} \mathrm{cm}^{-3}\right.$]
Data collection
Diffractometer
Radiation
Scan-width (ω-mode)
Measuring time
Measuring range
Reflections total
uniques/with $F_{n}>3 \sigma$
Parameters
Residuals
Goodness of fit
$\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Sn}, 276.89$
22.6 , emp. correction (ψ-Scans)
$P 2_{1} / m, Z=2$
$a=745.4(2)$
$b=744.5(3) \quad \beta=99.73(2)^{\circ}$
$c=1022.4(3)$
208
$d_{\mathrm{c}}=1.644$

4-circle, CAD4 (Enraf-Nonius)
Mo- K_{α}, graphite monochromator
$(1.1+0.35 \operatorname{tg} \theta)^{\circ}$ and additional 25% before and after each reflection for background measurement
variable, max. $25 \mathrm{~s} /$ reflection
$\theta: 2-22^{\circ}, \pm h+k+l$
1493
753/745
95
0.0289
$0.0397\left(w=1 / \sigma^{2}\left(F_{\mathrm{o}}\right)\right)$
3.719

Table 3
Fractional coordinates and isotropic equivalent temperature factors $U_{\mathrm{eq}}\left[10^{-20} \mathrm{~m}^{2}\right]$

Atom	x	y	z	$U_{\text {eq }}$
Sn1	$0.83769(5)$	$0.75000(0)$	$0.19827(3)$	$0.0332(2)$
O1	$0.2630(6)$	$0.75000(0)$	$0.2542(4)$	$0.052(2)$
O2	$0.5319(6)$	$0.75000(0)$	$0.3944(4)$	$0.042(1)$
N1	$0.4492(7)$	$0.75000(0)$	$0.0507(6)$	$0.061(2)$
N2	$0.3765(9)$	$0.75000(0)$	$-0.0545(7)$	$0.107(4)$
C1	$0.5416(8)$	$0.75000(0)$	$0.1725(5)$	$0.041(2)$
C2	$0.4259(7)$	$0.75000(0)$	$0.2726(5)$	$0.037(2)$
C3	$0.4322(9)$	$0.75000(0)$	$0.5044(6)$	$0.048(2)$
C4	$0.575(1)$	$0.75000(0)$	$0.6295(7)$	$0.056(3)$
C5	$0.8819(9)$	$0.75000(0)$	$-0.0036(6)$	$0.054(3)$
C6	$0.9134(7)$	$0.9912(8)$	$0.3043(5)$	$0.054(2)$

azoacetic esters listed in Table 1 the diazo ester groups adopt only the Z-(1) conformation in the crystal.

In the crystal the $\mathrm{Me}_{3} \mathrm{SnC}\left(\mathrm{N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}$ molecules are packed in parallel layers (Fig. 2); there is additional weak intermolecular coordination between the carbonyl oxygen atoms of one molecule and the tin atom of the neighbouring molecule generated by translation along the a-axis. The $\mathrm{Sn} \cdots \mathrm{O}$ distance of $312.5(5) \mathrm{pm}$ is much smaller than the Van der Waals contact distance of 382 pm: as a consequence, the angles $\mathrm{C}(1)-\mathrm{Sn}-\mathrm{Me}$ are smaller (average 103.1°) and the angle $\mathrm{Me}-\mathrm{Sn}-\mathrm{Me}$ larger (average 115°) than the tetrahedral angle of 109.5° (Tab. 4). This bonding mode confirms our conclusion [5] that five coordinate tin atoms are present in the solid state.

The tin-carbon bond distances are quite normal, with $\mathrm{Sn}-\mathrm{C}(1)$ 217.8(6) pm somewhat longer than the mean Sn -methyl carbon distance of 213.1 pm . Bond distances in the diazo part of the molecule are similar to those in $\mathrm{CH}_{2} \mathrm{~N}_{2}$ (determined in the gas phase) [6]: as in this molecule, the $\mathrm{C}(1)-\mathrm{N}(1)$ bond length of

Table 4
Bond lengths [pm] and angles [${ }^{\circ}$] in $\mathrm{Me}_{3} \mathrm{SnC}\left(\mathrm{N}_{2}\right) \mathrm{CO}_{2} \mathrm{Et}^{a}$

$\mathrm{Sn} 1-\mathrm{Cl}$	$217.8(6)$	$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{C} 5$	$101.6(2)$
$\mathrm{Sn} 1-\mathrm{C} 5$	$214.4(6)$	$\mathrm{C} 1-\mathrm{Sn} 1-\mathrm{C} 6$	$103.8(2)$
$\mathrm{Sn} 1-\mathrm{C} 6$	$212.5(6)$	$\mathrm{C} 5-\mathrm{Sn} 1-\mathrm{C} 6$	$114.9(2)$
$\mathrm{C} 1-\mathrm{N} 1$	$131.7(8)$	$\mathrm{C} 6-\mathrm{Sn} 1-\mathrm{C} 6^{\prime}$	$115.4(2)$
$\mathrm{N} 1-\mathrm{N} 2$	$111.9(9)$	$\mathrm{Sn} 1-\mathrm{C} 1-\mathrm{N} 1$	$118.2(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$144.6(8)$	$\mathrm{Sn} 1-\mathrm{C} 1-\mathrm{C} 2$	$128.9(4)$
$\mathrm{C} 2-\mathrm{O} 1$	$119.6(7)$	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{N} 2$	$177.5(7)$
$\mathrm{C} 2-\mathrm{O} 2$	$135.8(7)$	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$113.0(5)$
$\mathrm{O} 2-\mathrm{C} 3$	$144.9(8)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 1$	$126.9(5)$
$\mathrm{C} 3-\mathrm{C} 4$	$151.7(10)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{O} 2$	$108.9(5)$
$\mathrm{Sn} 1 \cdots \mathrm{O}^{\prime \prime}$	$312.5(5)$	$\mathrm{O} 1-\mathrm{C} 2-\mathrm{O} 2$	$124.2(5)$
$\mathrm{Sn} 1 \cdots \mathrm{Ol}^{\prime \prime}-\mathrm{C}^{\prime \prime}$	$\mathrm{C} 2-\mathrm{O} 2-\mathrm{C} 3$	$114.6(5)$	
$\mathrm{C} 1-\mathrm{Sn} 1 \cdots \mathrm{Ol}^{\prime \prime}$	$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4$	$106.0(5)$	

[^1]$131.7(8) \mathrm{pm}$ (for the lead compound the corresponding distance is 133 pm) is short and comparable with that of a carbon-nitrogen double bond (132 pm), while the $\mathrm{N}(1)-\mathrm{N}(2)$ bond length of $111.9(9) \mathrm{pm}$ (for Pb 117 pm) is consistent with nitrogennitrogen triple bond character. The diazo group shows relatively high anisotropic thermal parameters, with a maximum displacement for $\mathrm{N}(2)$ in the b-direction, perpendicular to the mirror plane ($U_{22}=0.24(1) \AA^{2}$). Thus, the bond lengths are probably slightly underestimated. A librational analysis led to minor corrections within the esd for the bond lengths $(\mathrm{N}(1)-\mathrm{N}(2)=112.7 \mathrm{pm})$.

Structure determination

A yellow crystal was mounted on a 4-circle-diffractometer (Table 2). The monoclinic cell dimensions were determined from 25 strong reflections. From the systematic absence $0 k 0: k=2 n+1$ the space group was judged to be $P 2_{1} / m$ or $P 2_{1}$. The structure determination was begun with the centrosymmetric choice $P 2_{1} / m$, and this was confirmed by the subsequent results. The structure was solved by Patterson methods [12] and subsequent difference Fourier syntheses and refined by least square methods using anisotropic temperature factors for all non-H-atoms [13]. All the H -atoms were located and refined (except for those at C 5 which were kept at riding positions) with isotropic temperature factors. The atomic coordinates are shown in Table 3 and the bond lengths and angles in Table 4^{*}.

Acknowledgements

This work was supported by the Fonds der Chemischen Industrie.

References

1 J. Lorberth, J. Organomet. Chem., 15 (1968) 251.
2 M. Birkhahn, E. Glozbach, W. Massa and J. Lorberth, J. Organomet. Chem., 192 (1980) 171.
3 R.L. Lichter, P.R. Srinivasan, A.B. Smith, R.K. Dieter, C.T. Denny and J.M. Schulman, J. Chem. Soc., Chem. Commun., (1977) 366.
4 F. Kaplan and G.K. Meloy, J. Am. Chem. Soc., 88 (1966) 950.
5 J. Lorberth, J. Organomet. Chem., 27 (1971) 303.
6 A.P. Cox, L.F. Thomas and J. Sheridan, Nature, 181 (1958) 1000.
7 C. Glidewell and G.M. Sheldrick, J. Chem. Soc., Dalton, (1972) 2409.
8 R.A. Smith, M. Torres and O.P. Strausz, Can. J. Chem., 55 (1977) 2752.
9 R.A. Smith, M. Torres and O.P. Strausz, Can. J. Chem., 55 (1977) 3527.
10 S.-I. Muharashi, Y. Kitani, T. Hosokawa, K. Miki and N. Kasai, J. Chem. Soc., Chem. Commun., (1979) 450; S.-I. Muharashi, Y. Kitani, T. Hosokawa, K. Miki, T. Yonezawa and N. Kasai, Organometallics, 5 (1986) 356.
11 M.J. Menu, P. Desrosiers, M. Dartiguenave and Y. Dartinguenave, Organometallics, 6 (1987) 1822.
12 G.M. Sheldrick, shelxs-86, Program for Crystal Structure Solution, Göttingen, 1986.
13 G.M. Sheldrick, shelx-76, Program for Crystal Structure Determination, Cambridge, 1976.
14 E. Keller, schakal 88b/16, A FORTRAN Program for the Graphic Representation of Molecular and Crystallographic Models, Freiburg, 1988.

[^2]
[^0]: * Final communication in the series "Metalorganic Diazoalkanes" ("Metallorganische Diazoalkane"); for Part XIX see ref. 2.
 ** Dedicated to Prof. K. Dimroth on the occasion of his 80th birthday.

[^1]: ${ }^{a}$ Symmetry operations: ' $x, 1.5-y, z ;{ }^{\prime \prime} 1+x, y, z$.

[^2]: * Lists of anisotropic temperature factors and the structure factors are obtainable from Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, Germany, by specification of deposit no. CSD-55155, authors, and the journal reference.

