Journal of Organometallic Chemistry, 407 (1991) 167–171 Elsevier Sequoia S.A., Lausanne JOM 21638

# Metalorganic diazoalkanes

# XX \*. Crystal structure of trimethyltin diazoacetic ester, Me<sub>3</sub>SnC(N<sub>2</sub>)CO<sub>2</sub>Et \*\*

Jörg Lorberth \*, Sung-Hee Shin, Harald Donath, Sigrid Wocadlo and Werner Massa

Fachbereich Chemie, Hans-Meerwein-Strasse, Philipps University, W-3550 Marburg/Lahn (Germany)

(Received September 26th, 1990)

#### Abstract

 $Me_3SnC(N_2)CO_2Et$  was obtained as a yellow, crystalline compound, m.p. 30 °C from the reaction of  $Me_3SnNEt_2$  with  $HC(N_2)CO_2Et$ , and its structure determined by X-ray diffractometry. The  $Me_3SnC(N_2)CO_2Et$  molecules have a plane of symmetry, the diazoacetic ester group being fixed in the Z-(1)-conformation. The CNN group is almost linear  $(177.5(7)^\circ)$  and has bond lengths (C-N 131.7(8) and N-N 111.9(9) pm) comparable with those in other metalorganic diazoalkanes. As in  $Me_3PbC(N_2)CO_2Et$ , the oxygen atom of the carbonyl group is weakly coordinated to the tin atom of a neighbouring molecule: Sn-O 312.5(5) pm, C-O-Sn 180.0°.

#### Introduction

There have been only a few reports of X-ray structural studies on metal derivatives of diazoalkanes. We present below the results of the first such study of a tin diazoalkane.

## **Results and discussion**

The diazoalkanes  $Me_3MC(N_2)CO_2Et$  with M = Sn [1] or Pb [2] are easily obtained by the amine elimination procedure:

 $Me_{3}MNR^{1}R^{2} + HC(N_{2})CO_{2}Et \rightarrow Me_{3}MC(N_{2})CO_{2}Et + HNR^{1}R^{2}$ 

 $(M = Sn; R^1 = R^2 = Me, Et; M = Pb; R^1 = R^2 = SiMe_3)$ 

<sup>\*</sup> Final communication in the series "Metalorganic Diazoalkanes" ("Metallorganische Diazoalkane"); for Part XIX see ref. 2.

<sup>\*\*</sup> Dedicated to Prof. K. Dimroth on the occasion of his 80th birthday.



Fig. 1. SCHAKAL drawing [14] of a molecule Me<sub>3</sub>SnC(N<sub>2</sub>)CO<sub>2</sub>Et in the crystal.

On the basis of spectroscopic data mainly those for IR/RE, NMR (<sup>1</sup>H, <sup>13</sup>C, <sup>15</sup>N, <sup>119</sup>Sn) and <sup>119</sup>Sn-Mössbauer spectra [2], we concluded that in solid Me<sub>3</sub>Sn-C(N<sub>2</sub>)CO<sub>2</sub>Et the molecules have a trigonal bipyramidal configuration at tin with carbonyl oxygen atoms interlinking neighbouring molecules in the crystal, as found previously for, e.g., solid Me<sub>3</sub>PbC(N<sub>2</sub>)CO<sub>2</sub>Et [2]. Diazoacetic ester in the liquid phase from -50 °C to +20 °C is present as 2 conformational isomers, Z-(1) and *E*-(1), with an estimated activation barrier for interconversion of only 36–48 kJ/mol (calculated value: 56 kJ/mol), a value significantly lower [3] than that for diazo ketones, for which values of 60–72 kJ/mol have been reported [4].

An X-ray crystal structure determination on Me<sub>3</sub>SnC(N<sub>2</sub>)CO<sub>2</sub>Et revealed (Fig. 1) that all the atoms except the methyl group at C(6) and two H-atoms at C(5) lie in the mirror plane of the space group  $P2_1/m$ . As in the other metalorganic di-

Table 1

Molecular parameters (bond lengths [pm], bond angles [°]) obtained from X-ray data for metalorganic diazoalkanes and the parent  $CH_2N_2$  (gas phase)

| Compound                                                             | M-C      | C-N      | N-N          | MCN<br>[HCN] | C-N-N    | Lit.      |
|----------------------------------------------------------------------|----------|----------|--------------|--------------|----------|-----------|
| CH <sub>2</sub> N <sub>2</sub>                                       |          | 132      | 112          | [116.5]      | 180.0    | [6]       |
| $Ph_3Si(Ph)CN_2$                                                     | 188.2(1) | 128.0(1) | 113.0(1)     | 115.3(1)     | 178.1(1) | [7]       |
| Ph <sub>3</sub> Ge(Ph)CN <sub>2</sub>                                |          | isc      | structural t | o Si         |          |           |
| $Hg[CN_2CO_2R]_2$                                                    | 213(3)   | 125(4)   | 115(5)       | 118(1)       | 178(5)   | [8]       |
| $(\mathbf{R} = \mathbf{t} - \mathbf{C}_{\mathbf{a}} \mathbf{H}_{9})$ |          |          |              |              | . /      |           |
| $Hg[CN_2CO_2Et]_2$                                                   | 201(1)   | 131(2)   | 108(2)       | 124(1)       | 175(2)   | [9]       |
| Me <sub>3</sub> PbCN <sub>2</sub> CO <sub>2</sub> Et                 | 227.0    | 133.0    | 117.0        | 116.3(1)     | 174.3(3) | [2]       |
| Me <sub>3</sub> SnCN <sub>2</sub> CO <sub>2</sub> Et                 | 214.2(6) | 131.7(8) | 111.9(9)     | 118.2(4)     | 177.5(7) | this work |
| $[Ph_3P]_2Pd(Cl)[CN_2CO_2Et]$                                        | 201.5(1) | 127.5(1) | 116.0(1)     | 121.7(8)     | 177.2(1) | [10]      |
| $[Bu_3P]_2Pd[CN_2CO_2Et]_2$                                          | 207.8(6) | 127.9(8) | 113.0(1)     | 119.5(5)     | 176.3(8) | [10]      |
| $RhICH_3(PMe_3)_3[CN_2SiMe_3]$                                       | 210(2)   | 130(3)   | 109(3)       | 119(2)       | 175(2)   | [11]      |



Fig. 2. Stereo view of two unit cells showing the chains formed by weak Sn  $\cdots$  O contacts.

# Table 2

Crystal data and details of crystallographic study

| Crystal data                         |                                                                                                                |
|--------------------------------------|----------------------------------------------------------------------------------------------------------------|
| Formula, M <sub>r</sub>              | $C_7 H_{14} N_2 O_2 Sn, 276.89$                                                                                |
| Absorption $\mu$ [cm <sup>-1</sup> ] | 22.6, emp. correction ( $\psi$ -Scans)                                                                         |
| Space group                          | $P2_1/m, Z = 2$                                                                                                |
| Lattice constants                    | a = 745.4(2)                                                                                                   |
| [pm]                                 | $b = 744.5(3)$ $\beta = 99.73(2)^{\circ}$                                                                      |
| -                                    | c = 1022.4(3)                                                                                                  |
| Temperature [K]                      | 208                                                                                                            |
| Density [g cm <sup>-3</sup> ]        | $d_{\rm c} = 1.644$                                                                                            |
| Data collection                      |                                                                                                                |
| Diffractometer                       | 4-circle, CAD4 (Enraf-Nonius)                                                                                  |
| Radiation                            | $Mo-K_{\alpha}$ , graphite monochromator                                                                       |
| Scan-width ( $\omega$ -mode)         | $(1.1+0.35tg\theta)^{\circ}$ and additional 25% before and after<br>each reflection for background measurement |
| Measuring time                       | variable, max. 25 s/reflection                                                                                 |
| Measuring range                      | $\theta$ : 2-22°, $\pm h + k + l$                                                                              |
| Reflections total                    | 1493                                                                                                           |
| uniques/with $F_0 > 3\sigma$         | 753/745                                                                                                        |
| Parameters                           | 95                                                                                                             |
| Residuals R                          | 0.0289                                                                                                         |
| R "                                  | $0.0397 (w = 1/\sigma^2(F_o))$                                                                                 |
| Goodness of fit $S''$                | 3.719                                                                                                          |
|                                      |                                                                                                                |

| Atom | x          | у          | z          | $U_{\rm eq}$ |
|------|------------|------------|------------|--------------|
| Sn1  | 0.83769(5) | 0.75000(0) | 0.19827(3) | 0.0332(2)    |
| 01   | 0.2630(6)  | 0.75000(0) | 0.2542(4)  | 0.052(2)     |
| O2   | 0.5319(6)  | 0.75000(0) | 0.3944(4)  | 0.042(1)     |
| N1   | 0.4492(7)  | 0.75000(0) | 0.0507(6)  | 0.061(2)     |
| N2   | 0.3765(9)  | 0.75000(0) | -0.0545(7) | 0.107(4)     |
| C1   | 0.5416(8)  | 0.75000(0) | 0.1725(5)  | 0.041(2)     |
| C2   | 0.4259(7)  | 0.75000(0) | 0.2726(5)  | 0.037(2)     |
| C3   | 0.4322(9)  | 0.75000(0) | 0.5044(6)  | 0.048(2)     |
| C4   | 0.575(1)   | 0.75000(0) | 0.6295(7)  | 0.056(3)     |
| C5   | 0.8819(9)  | 0.75000(0) | -0.0036(6) | 0.054(3)     |
| C6   | 0.9134(7)  | 0.9912(8)  | 0.3043(5)  | 0.054(2)     |

| $\Gamma$ ractional coordinates and isotropic equivalent temperature factors $U_{eo}$ [10] m | Fractional | coordinates | and isotro | opic equiva | lent temperatu | re factors l | $U_{ac} [10^{-20}]$ | $m^2$ |
|---------------------------------------------------------------------------------------------|------------|-------------|------------|-------------|----------------|--------------|---------------------|-------|
|---------------------------------------------------------------------------------------------|------------|-------------|------------|-------------|----------------|--------------|---------------------|-------|

azoacetic esters listed in Table 1 the diazo ester groups adopt only the Z-(1) conformation in the crystal.

In the crystal the Me<sub>3</sub>SnC(N<sub>2</sub>)CO<sub>2</sub>Et molecules are packed in parallel layers (Fig. 2); there is additional weak intermolecular coordination between the carbonyl oxygen atoms of one molecule and the tin atom of the neighbouring molecule generated by translation along the *a*-axis. The Sn  $\cdots$  O distance of 312.5(5) pm is much smaller than the Van der Waals contact distance of 382 pm: as a consequence, the angles C(1)–Sn–Me are smaller (average 103.1°) and the angle Me–Sn–Me larger (average 115°) than the tetrahedral angle of 109.5° (Tab. 4). This bonding mode confirms our conclusion [5] that five coordinate tin atoms are present in the solid state.

The tin-carbon bond distances are quite normal, with Sn-C(1) 217.8(6) pm somewhat longer than the mean Sn-methyl carbon distance of 213.1 pm. Bond distances in the diazo part of the molecule are similar to those in  $CH_2N_2$  (determined in the gas phase) [6]: as in this molecule, the C(1)-N(1) bond length of

| Sn1-Cl                   | 217.8(6)  | C1-Sn1-C5  | 101.6(2) |
|--------------------------|-----------|------------|----------|
| Sn1-C5                   | 214.4(6)  | C1-Sn1-C6  | 103.8(2) |
| Sn1-C6                   | 212.5(6)  | C5-Sn1-C6  | 114.9(2) |
| C1N1                     | 131.7(8)  | C6-Sn1-C6' | 115.4(2) |
| N1-N2                    | 111.9(9)  | Sn1C1N1    | 118.2(4) |
| C1-C2                    | 144.6(8)  | Sn1-C1-C2  | 128.9(4) |
| C2-O1                    | 119.6(7)  | C1-N1-N2   | 177.5(7) |
| C2-O2                    | 135.8(7)  | N1-C1-C2   | 113.0(5) |
| O2-C3                    | 144.9(8)  | C1-C2-O1   | 126.9(5) |
| C3-C4                    | 151.7(10) | C1-C2-O2   | 108.9(5) |
| S=1 01"                  | 212 5(5)  | O1-C2-O2   | 124.2(5) |
| 31101                    | 512.5(5)  | C2-O2-C3   | 114.6(5) |
| $Sn1 \cdots O1'' - C2''$ | 180.0(5)  | O2-C3-C4   | 106.0(5) |
| $C1-Sn1\cdots O1''$      | 176.5(2)  |            |          |

Bond lengths [pm] and angles [°] in Me<sub>3</sub>SnC(N<sub>2</sub>)CO<sub>2</sub>Et <sup>a</sup>

<sup>a</sup> Symmetry operations: ' x, 1.5 – y, z; '' 1 + x, y, z.

Table 3

Table 4

131.7(8) pm (for the lead compound the corresponding distance is 133 pm) is short and comparable with that of a carbon-nitrogen double bond (132 pm), while the N(1)-N(2) bond length of 111.9(9) pm (for Pb 117 pm) is consistent with nitrogennitrogen triple bond character. The diazo group shows relatively high anisotropic thermal parameters, with a maximum displacement for N(2) in the *b*-direction, perpendicular to the mirror plane ( $U_{22} = 0.24(1)$  Å<sup>2</sup>). Thus, the bond lengths are probably slightly underestimated. A librational analysis led to minor corrections within the esd for the bond lengths (N(1)-N(2) = 112.7 pm).

#### Structure determination

A yellow crystal was mounted on a 4-circle-diffractometer (Table 2). The monoclinic cell dimensions were determined from 25 strong reflections. From the systematic absence 0k0: k = 2n + 1 the space group was judged to be  $P2_1/m$  or  $P2_1$ . The structure determination was begun with the centrosymmetric choice  $P2_1/m$ , and this was confirmed by the subsequent results. The structure was solved by Patterson methods [12] and subsequent difference Fourier syntheses and refined by least square methods using anisotropic temperature factors for all non-H-atoms [13]. All the H-atoms were located and refined (except for those at C5 which were kept at riding positions) with isotropic temperature factors. The atomic coordinates are shown in Table 3 and the bond lengths and angles in Table 4 \*.

#### Acknowledgements

This work was supported by the Fonds der Chemischen Industrie.

## References

- 1 J. Lorberth, J. Organomet. Chem., 15 (1968) 251.
- 2 M. Birkhahn, E. Glozbach, W. Massa and J. Lorberth, J. Organomet. Chem., 192 (1980) 171.
- 3 R.L. Lichter, P.R. Srinivasan, A.B. Smith, R.K. Dieter, C.T. Denny and J.M. Schulman, J. Chem. Soc., Chem. Commun., (1977) 366.
- 4 F. Kaplan and G.K. Meloy, J. Am. Chem. Soc., 88 (1966) 950.
- 5 J. Lorberth, J. Organomet. Chem., 27 (1971) 303.
- 6 A.P. Cox, L.F. Thomas and J. Sheridan, Nature, 181 (1958) 1000.
- 7 C. Glidewell and G.M. Sheldrick, J. Chem. Soc., Dalton, (1972) 2409.
- 8 R.A. Smith, M. Torres and O.P. Strausz, Can. J. Chem., 55 (1977) 2752.
- 9 R.A. Smith, M. Torres and O.P. Strausz, Can. J. Chem., 55 (1977) 3527.
- 10 S.-I. Muharashi, Y. Kitani, T. Hosokawa, K. Miki and N. Kasai, J. Chem. Soc., Chem. Commun., (1979) 450; S.-I. Muharashi, Y. Kitani, T. Hosokawa, K. Miki, T. Yonezawa and N. Kasai, Organometallics, 5 (1986) 356.
- 11 M.J. Menu, P. Desrosiers, M. Dartiguenave and Y. Dartinguenave, Organometallics, 6 (1987) 1822.
- 12 G.M. Sheldrick, SHELXS-86, Program for Crystal Structure Solution, Göttingen, 1986.
- 13 G.M. Sheldrick, SHELX-76, Program for Crystal Structure Determination, Cambridge, 1976.
- 14 E. Keller, SCHAKAL 88B/16, A FORTRAN Program for the Graphic Representation of Molecular and Crystallographic Models, Freiburg, 1988.

<sup>\*</sup> Lists of anisotropic temperature factors and the structure factors are obtainable from Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, W-7514 Eggenstein-Leopoldshafen 2, Germany, by specification of deposit no. CSD-55155, authors, and the journal reference.